Informational Designs of Phase III Trials for Expedited Development of Immuno-oncology Therapies with a Putative Predictive Biomarker

**Cong Chen, PhD** Director, BARDS, Merck & Co., Inc.

BASS XXII, 2015



# Outline

- Introduction to informational design
- Adaptive alpha-allocation
  - Without use of unblinded trial data
  - With use of unblinded trial data
- Adaptive biomarker population selection
  - Same endpoint for selection and final analysis
  - Different endpoints for selection and final analysis
- Discussion

# Media buzz about PD-1/PD-L1 After ASCO



# Expedited development amid uncertainties

- Under fierce competition, Phase III confirmatory trials are often initiated at risk after preliminary anti-tumor activities are observed in small Phase I/II single arm studies.
  - Adjuvant or neo-adjuvant studies are often initiated w/o any data in same setting
- The preliminary data can hardly provide the much-needed information for selecting a biomarker subpopulation or prioritizing a biomarker hypothesis for Phase III testing
- The preliminary data seldom provides any insight on how the treatment effect evolves over time a big headache!

### Nivolumab in non-squamous lung

#### **Overall Survival**



Phase III, randomized trial (CheckMate 057) of nivolumab (NIVO) versus docetaxel (DOC) in advanced non-squamous cell (non-SQ) non-small cell lung cancer (NSCLC).

# Subgroup analysis of OS by PD-L1 expression



### **OS by PD-L1 Expression**

- How does hazard ratio evolve over time in PD-L1 high patients?
- What is the appropriate cutpoint for PD-L1 expression?
- Why KM curves overlap in patients with low PD-L1 expression?

# **Conventional designs**

- Sequential Phase II followed by Phase III
  - Slow and susceptible to shift of treatment paradigm
- Seamless/adaptive Phase II/III
  - Treatment effect observed at an interim analysis may not be the same as in the final analysis due to mechanism of action, cross-over, or change in patient demographics
  - Use of an intermediate endpoint for decision may be unreliable because the predictive value of an intermediate endpoint is often unknown for drugs with a new mechanism of action, or in settings or populations with little experience

# **Informational Design**

# Informational analysis

- Add an analysis at end of the Phase III trial in a representative subset of patients (*sub-study*) for subpopulation selection and adaptive hypothesis adjustment
  - Two of every 10 patients are randomly selected if 20% of the trial information will be used in the analysis (e.g.)
  - The subgroup analysis is equivalent to a Phase II trial conducted under same clinical design at same time in same population at same sites as the Phase III trial
  - The informational analysis can be conduced earlier when an intermediate endpoint such as RR/PFS (vs OS as primary endpoint) is used for adaptive decision
- The patients in sub-study are included in final analysis

# **Conventional interim analysis**



# Informational analysis vs interim analysis



# Informational design vs adaptive design

- Achilles's heel of a conventional adaptive design
   Change of patients' characteristics after adaptation
- Information design is a type of ideal adaptive design
  - Some of the methods developed for adaptive design can be readily applied to informational design



# A similar concept

- Ideally a biomarker and cutpoint are available before Phase III to mitigate regulatory risk and avoid delay of approval, but it usually takes a long time to develop.
- Freidlin and Simon's adaptive signature design
  - Use a subset of patients in Phase III as training set to find a biomarker cutpoint
  - Split alpha between the biomarker positive population and all-comer population
  - Trial is positive if p-value <2% in all-comer population or <0.5% in biomarker positive population (excluding those in training set)
- We assume biomarker subpopulations are well-defined

# Statistical issues of interest

- How to test the co-primary hypotheses in overall population and a biomarker positive (BM+) subpopulation without any credible prior?
- Which biomarker subpop(s) to keep at final analysis?
  - Inclusion of non-performing subpopulations makes study design less efficient
  - A statistically significant outcome overall but clinically underwhelming outcome in biomarker subpopulation(s) present challenges to reimbursement

# Adaptive alpha-allocation without use of unblinded trial-data

# **RADIANT** – a motivating study

- Hypothesis testing
  - Erlotinib prolongs disease-free-survival (DFS) in completely resected patients with early stage (IB-IIIA) NSCLC whose tumor expressed EGFR by IHC or FISH
  - Step-down from all-randomized patients to a subpopulation with del19/L858R (EGFR M+)
- Sample size and timeline
  - 973 patients and 382 DFS events (~80% power for 0.75 hazard ratio)
  - Enrollment (9/2006 7/2010) and data cut-off (4/2013)

# A missed opportunity



# Adaptive alpha-allocation strategies

- Alpha-allocation as a function of blinded event ratio of a biomarker positive subpopulation in overall population
  - No penalty for multiplicity control

alpha-allocation function = alpha-spending function

- Alpha-allocation not only as a function of blinded event ratio but also as a function of interim outcome
  - Pay penalty for multiplicity control

The penalty is also event ratio driven

# Incorporate blinded event ratio only

- A trial is sized to have 90% power to detect a 0.7 hazard ratio at 2.5% (T: ~330 events)
- How to allocate alpha when target hazard ratio is 0.7 in overall population and 0.6 in BM+ population?
  - Overall alpha is controlled at 2.5% if alpha is controlled at 2.5% under each event ratio (notice ∫f(A|B)∂B≤max{f(A|B})
- A conservative but **optimized** Bonferroni approach
  - -0.5% to BM+, 2.0% to overall when event ratio (r)=40%
  - -1.4% to BM+, 1.1% to overall when event ratio ( $\hat{r}$ )=50%
- Incorporate correlation into optimization
  - Customized alpha allocation function (Chen et al 2009)
  - Spiessens & Debois used an existing alpha-spending function as alpha-allocation function (2010)

# Alpha-allocation function and power



# What is the value of a 1% power increase?

- \$1,000,000 if the drug has a net value of \$1B in an indication over its life-time
  - A conservative assumption for a typical indication
- \$1,000,000 savings in trial cost for a typical Phase III trial
  - Equivalent to the reduction of ~20 patients in a study with sample size of ~600
  - Average post per patient in an oncology trial is conservatively estimated to be \$50,000
- An innovative statistical method is potentially worth millions of dollars to every study it is applied to!

# Adaptive alpha-allocation with use of unblinded trial-data

# Auto-adaptive alpha-allocation with trial data

- For each *t*, find the alpha-allocation that maximize the expected conditional power
  - Informational analysis provides an objective prior distribution of estimates for true treatment effects
  - Estimates of treatment effects based on external data can be further incorporated
- The adjusted alpha at t,  $\alpha^*(t)$ , is calculated to keep the actual Type I error controlled at  $\alpha$ 
  - The larger the *t* the smaller the  $\alpha^*(t)$
- Is the  $\alpha$  penalty worth it?
  - No if we have strong prior; Yes otherwise

# Algorithm

• Choose  $\alpha_1$  (overall study) and  $\alpha_2$  (subgroup) that maximize the expected conditional power

• 
$$Q(\alpha_1, \alpha_2; \mathbf{x_{1,t}}, \mathbf{x_{2,t}}, \alpha_t) = \int \left\{ 1 - \Phi_{\sqrt{r}} \left( \frac{Z_{1-\alpha_1} - \sqrt{t} \mathbf{x_{1,t}}}{\sqrt{1-t}} - \sqrt{(1-t)I_3} \Delta_1, \frac{Z_{1-\alpha_2} - \sqrt{t} \mathbf{x_{2,t}}}{\sqrt{1-t}} - \sqrt{(1-t)rI_3} \Delta_2 \right) \right\} g(\Delta_1, \Delta_2 | \mathbf{x_{1,t}}, \mathbf{x_{2,t}}) d\Delta_1 \Delta_2$$

subject to the constraint by **nominal** type I error of :

 $1 - \Phi_{\sqrt{r}}(Z_{1-\alpha_1}, Z_{1-\alpha_2}) = \alpha_t, t \in [0, 1]$ 

### Find α<sub>t</sub> to keep overall alpha under control

- Denote  $(\tilde{\alpha}_{1,t}, \tilde{\alpha}_{2,t})$  = arg max  $Q(\alpha_1, \alpha_2; x_{1t}, x_{2t}, \alpha_t)$ . The actual type I error under the global null hypothesis is:

$$P(\alpha_t) = \int \left[ 1 - \Phi_{\sqrt{r}} \left( \frac{Z_{1-\tilde{\alpha}_{1,t}} - \sqrt{t} x_{1t}}{\sqrt{1-t}}, \frac{Z_{1-\tilde{\alpha}_{2,t}} - \sqrt{t} x_{2t}}{\sqrt{1-t}} \right) \right] \phi_{\sqrt{r}}(x_{1t}, x_{2t}) \, dx_{1t} x_{2t}.$$

- Iterative root finding for the equation  $P(\alpha_t) = \alpha$ .

# Application to a RADIANT like study

- 1:1 randomization with a total 410 events
  - 83% power for detecting a 0.75 hazard ratio at 2.5% in overall population
  - The true (UNKNOWN) hazard ratio is 0.90 in overall population and 0.61 in the biomarker positive population
  - -17% or 34% of the events are assumed in the subpopulation
- Power comparison
  - The study has only 19% power if step-down from overall population (aka RADIANT approach)
  - Should the biomarker subpopulation be tested first, the study would have 54% power at r=17% and 83% power at r=34%
  - The informational design would have ~45% power at r=17% and ~75% power at r=34%
  - A little bit of information adds tremendous value. However, benefit of more information is offset by penalty on alpha.

# **α**<sup>\*</sup> and power in a RADIANT like study



# Adaptive population selection under same endpoint

# **IPASS** – overall population



# EGFR – mutation positive

#### B EGFR-Mutation-Positive



# EGFR – mutation negative

C EGFR-Mutation-Negative



# Set-up

- Suppose the overall population consists of k disjoint biomarker subpopulations and treatment effect increases with biomarker level
- A decision is made based on information fraction t to exclude subpopulations without a numerically positive treatment effect in a step-up process that starts from lowest biomarker level (least efficacious)
- Which Type I error rate (alpha\*) should the hypothesis be tested in remaining patients?

# Solving for adjusted alpha ( $\alpha^*$ )

- Let Y<sub>i1</sub> be the test statistics based on information fraction t
   The *m*-th subpopulation will not be included in final analysis if p-value based on Y<sub>i1</sub> is > α<sub>t</sub> for all *i*≤m
- Suppose that *m* cohorts are excluded in the final analysis (k>*m*≥0), and let Z<sub>-m</sub> be the corresponding test statistics. The probability of a positive outcome in pooled analysis is

 $R(\alpha^*|\alpha_t, m) = Prob(Y_{i1} < Z_{1-\alpha_t} \text{ for } i=1,...,m, Y_{m+1,1} > Z_{1-\alpha_t}, Z_{-m} > Z_{1-\alpha^*})$ 

•  $\alpha^*$  is solved from below

$$\sum_{m=0}^{k-1} \ \mathbf{R}(\alpha^* \mid \alpha_t, m) = \alpha$$

# **α\* under different k**

- Equal prevalence of events by biomarker level
- $\alpha_t = 0.5$  (binding)



# A hypothetical example

- Consider a hypothetical study with 3 ordered biomarker subpopulations (i.e., low, intermediate, high)
- The study targets 410 events so that the study has 83% power for detecting a 0.75 hazard ratio at 2.5% (onesided) in the overall population
- The study may drop low, low + intermediate, OR drop all ("early" termination) if empirical effect is negative
- Log-hazard ratios are  $log(0.75)+\delta$ , log(0.75),  $log(0.75)-\delta$ 
  - When  $\delta$  ranges from 0.2 to 0.4, hazard ratio ranges from 0.92 to 1.12 for the "low" group and from 0.50 to 0.61 for the "high" group

# **Operational characteristics**

| δ                                                                                                               | t   | α*     | Prob<br>(keep all) | Prob<br>(drop<br>low) | Prob (drop<br>low/<br>intermediate) | Prob<br>(drop<br>all) | Overall<br>study<br>power |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-----|--------|--------------------|-----------------------|-------------------------------------|-----------------------|---------------------------|--|--|--|
| 0.2                                                                                                             | 40% | 0.0164 | 0.63               | 0.24                  | 0.11                                | 0.02                  | 0.75                      |  |  |  |
| 0.2                                                                                                             | 60% | 0.0153 | 0.65               | 0.25                  | 0.09                                | 0.01                  | 0.84                      |  |  |  |
| 0.3                                                                                                             | 40% | 0.0164 | 0.48               | 0.31                  | 0.18                                | 0.03                  | 0.76                      |  |  |  |
| 0.3                                                                                                             | 60% | 0.0153 | 0.48               | 0.35                  | 0.16                                | 0.01                  | 0.87                      |  |  |  |
| 0.4                                                                                                             | 40% | 0.0164 | 0.34               | 0.36                  | 0.27                                | 0.03                  | 0.79                      |  |  |  |
| 0.4                                                                                                             | 60% | 0.0153 | 0.31               | 0.42                  | 0.26                                | 0.01                  | 0.91                      |  |  |  |
| The overall study has 83% power w/o population de-selection. De-selection criterion or timing is not optimized. |     |        |                    |                       |                                     |                       |                           |  |  |  |

# Adaptive population selection under different endpoints

# A hypothetical trial

- A randomized controlled trial targets 330 OS events overall (~600 patients) so that the study has 90% power to detect a 0.70 HR in OS at 2.5% alpha level
  - Treatment effect is assumed to be ordered by BM level from low to high with equal prevalence
- An interim analysis of PFS is conducted when 165 deaths (t=50%) and 250 PFS events are observed
  - Exclude BM low in final analysis if p-value >  $\alpha_t$
  - Stop study if p-value for BM high is further >  $\alpha_t$  and sample size for BM high will increase as needed
- What is the nominal alpha ( $\alpha^*$ ) at final analysis of OS to maintain overall Type I error rate at 2.5%?

# Nominal type I error at final analysis ( $\alpha^*$ )

- Interim analysis is done when half of the survival information is available (t=50%) and accrual is about to complete
  - 250 PFS events at interim (vs 165 OS events)
  - BM low and BM high have same number of events
- Overall type I error under the null hypothesis of no treatment effect on OS without any constraint on PFS effect ( $\delta_1$ ,  $\delta_2$ )

$$P(X_{l1} > Z_{1-\alpha_t}, V_{all} > Z_{1-\alpha^*} | (\delta_1, \Delta_1 = \Delta_2 = 0)) + P(X_{l1} < Z_{1-\alpha_t}, X_{h1} > Z_{1-\alpha_t}, V_{h2} > Z_{1-\alpha^*} | (\delta_1, \delta_2, \Delta_2 = 0)$$

Minimal α\* of entire (δ<sub>1</sub>, δ<sub>2</sub>) space that keeps above overall type I error at 0.025 is the nominal alpha for final analysis
 Not needed when OS is used for biomarker selection

# Nominal Type I error at final analysis ( $\alpha^*$ )

• Type I error under the null hypothesis of no OS effect  $(\Delta_1 = \Delta_2 = 0)$  without constraint on PFS effects  $(\delta_1, \delta_2)$ 

$$P(X_{l1} > Z_{1-\alpha_t}, V_{all} > Z_{1-\alpha^*} | \delta_1, \Delta_1 = \Delta_2 = 0) + P(X_{l1} < Z_{1-\alpha_t}, X_{h1} > Z_{1-\alpha_t}, V_{h2} > Z_{1-\alpha^*} | \delta_1, \delta_2, \Delta_2 = 0)$$

- Minimal  $\alpha^*$  of entire  $(\delta_1, \delta_2)$  space that keeps above overall type I error at 0.025 is the nominal alpha
  - $-\delta_1 = \delta_2 = 0$  when OS is used for both analyses and in this case  $\alpha^*$  can be greater than 2.5% due to binding futility stopping

# $\alpha^*$ by correlation between PFS and OS

- Each a\* is determined by correlation between PFS and OS which can be estimated from the trial data once study is over, and estimate of a\* is consistent as long as the correlation estimate is consistent
- Minimum α\* is reached at nondegenerate/non-trivial (δ<sub>1</sub>, δ<sub>2</sub>) due to the complicated interplay between cherry picking and futility stopping

t=0.5





delta (BM high)

# Minimal $\alpha^*$ by different de-selection rule ( $\alpha_t$ )



Minimal  $\alpha^*$  is robust to  $\alpha_t$  in this hypothetical example

# Set-up for power comparison

- True HR for OS is 0.6 in BM high and is 1 in BM low
   The actual power without biomarker selection is 64%
- True HR for PFS is 0.45 in BM high and is 1 in BM low
  - Sensitivity of PFS for immunotherapies depends on tumor type and line of therapy, an may differ by biomarker level
  - It is unclear whether RR or PFS is a more sensitive intermediate endpoint, and how (not whether) RECIST should be modified to better predict clinical benefit

# **Power comparison**

- Use of OS for de-selection

   Highest power is achived at α<sub>t</sub>=0.3 (~0.9 hazard ratio)
- Use of PFS for de-selection

   α<sub>t</sub> is conveniently chosen at 0.1 (~0.8 hazard ratio)
- All have higher power than no-selection (64%), and use of PFS has higher power than use of OS despite greater  $\alpha^*$
- Power is robust to rho (more useful info ⇔ higher rho ⇔ higher penalty)



# Impact of sample size increase on study power



Increase of sample size reduces the correction between PFS at interim and OS at final, and hence penalty

# Discussion

- Uncertainty about biomarker effect and prevalence calls for data-driven and objective designs
- Uncertainty about treatment effect over time provides challenges to conventional adaptive designs
- Informational design provides a salvage plan, and is not meant to replace but to supplement conventional designs
  - However, it is the only option if the data on biomarkers are not available until the end of study

# Key references

- Chen C, Li N, Shentu Y, Pang L, Beckman RA. Informational Design of confirmatory Phase III Trials for Expedited Development of Personalized Medicines. 2015, unpublished manuscript
- Chen C, Beckman RA. Hypothesis Testing in a Confirmatory Phase III Trial With a Possible Subset Effect. Statistics in Biopharmaceutical Research 2009; 1(4): 431–440.
- Spiessens B, Debois M. Adjusted significance levels for subgroup analysis in clinical trials. Contemporary Clinical Trials 2010; 31:647– 656.
- Shentu Y, Chen C, Pang L, Beckman RA. Auto-adaptive Alpha Allocation: a strategy to mitigate risk on study assumptions. 2015, unpublished manuscript
- Freidlin B, Simon R. Adaptive signature design: an adaptive clinical trial design for generating and prospectively testing a gene expression signature for sensitive patients. Clinical Cancer Research 2005; 11 (21): 7872-7878.

# ORR of pembrolizumab in melanoma trials

|          |           | Phase IB<br>Exploratory |                    | Phase III<br>Confirmatory |                    |
|----------|-----------|-------------------------|--------------------|---------------------------|--------------------|
| Dose     | Prior IPI | Ν                       | ORR,<br>% (95% CI) | Ν                         | ORR,<br>% (95% CI) |
| 10 mg/kg | Naive     | 39                      | 49 (32–65)         | 279                       | 34 (38–40)         |
| Q2W      | Treated   | 13                      | 62 (32–86)         |                           |                    |
| 10 mg/kg | Naive     | 19                      | 26 (9–51)          | 277                       | 33 (27–39)         |
| Q344     | Treated   | 26                      | 27 (12–48)         |                           |                    |

- A dose response seen in Phase 1B disappears in Phase III
- Patients are never i.i.d in oncology trials, especially in the field of highly competitive immunotherapies

N Engl J Med 2013, 169: 134-144; N Engl J Med 2015; 372:2521-2532

# Immuno-oncology therapies (pembrolizumab vs ipilimumab) in advanced melanoma

- Flatter tails than normally seen
- Much longer survival than before when the median was 8-10 months
- Many patients may live for >5 years ("cured")





THE RIGHT PATIENT. THE RIGHT TREATMENT.

### OS and PFS Hazard Ratios by Baseline PD-L1 Expression



# POPLAR

